Using neural networks for the diagnosis of localized defects in ball bearings

نویسندگان

  • M. Subrahmanyam
  • C. Sujatha
چکیده

Two neural network based approaches, a multilayered feed forward neural network trained with supervised Error Back Propagation technique and an unsupervised Adaptive Resonance Theory-2 (ART2) based neural network were used for automatic detection/diagnosis of localized defects in ball bearings. Vibration acceleration signals were collected from a normal bearing and two different defective bearings under various load and speed conditions. The signals were processed to obtain various statistical parameters, which are good indicators of bearing condition, and these inputs were used to train the neural network and the output represented the ball bearing states. The trained neural networks were used for the recognition of ball bearing states. The results showed that the trained neural networks were able to distinguish a normal bearing from defective bearings with 100% reliability. Moreover, the networks were able to classify the ball bearings into different states with success rates better than those achieved with the best among the state-of-the-art techniques.  1998 Elsevier Science Ltd. All rights reserved

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

AN INTELLIGENT FAULT DIAGNOSIS APPROACH FOR GEARS AND BEARINGS BASED ON WAVELET TRANSFORM AS A PREPROCESSOR AND ARTIFICIAL NEURAL NETWORKS

In this paper, a fault diagnosis system based on discrete wavelet transform (DWT) and artificial neural networks (ANNs) is designed to diagnose different types of fault in gears and bearings. DWT is an advanced signal-processing technique for fault detection and identification. Five features of wavelet transform RMS, crest factor, kurtosis, standard deviation and skewness of discrete wavelet co...

متن کامل

Bearing Fault Detection Based on Maximum Likelihood Estimation and Optimized ANN Using the Bees Algorithm

Rotating machinery is the most common machinery in industry. The root of the faults in rotating machinery is often faulty rolling element bearings. This paper presents a technique using optimized artificial neural network by the Bees Algorithm for automated diagnosis of localized faults in rolling element bearings. The inputs of this technique are a number of features (maximum likelihood estima...

متن کامل

A Novel Intelligent Fault Diagnosis Approach for Critical Rotating Machinery in the Time-frequency Domain

The rotating machinery is a common class of machinery in the industry. The root cause of faults in the rotating machinery is often faulty rolling element bearings. This paper presents a novel technique using artificial neural network learning for automated diagnosis of localized faults in rolling element bearings. The inputs of this technique are a number of features (harmmean and median), whic...

متن کامل

Ann Based Fault Diagnosis of Rolling Element Bearing Using Time-frequency Domain Feature

This paper presents a methodology for an automation of fault diagnosis of ball bearings having localized defects (spalls) on the various bearing components. The system uses the wavelet packet decomposition using ‘rbio5.5’ real mother wavelet function for feature extraction from the vibration signal, recorded for various bearing fault conditions. The decomposition level is determined by the samp...

متن کامل

A DWT and SVM based method for rolling element bearing fault diagnosis and its comparison with Artificial Neural Networks

A classification technique using Support Vector Machine (SVM) classifier for detection of rolling element bearing fault is presented here.  The SVM was fed from features that were extracted from of vibration signals obtained from experimental setup consisting of rotating driveline that was mounted on rolling element bearings which were run in normal and with artificially faults induced conditio...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 1998